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The crossing frequency is the number of times per second the vibration amplitude crosses the
zero displacement line from negative displacement to positive displacement. In #ow-induced
vibration in which the motions are often random and/or a number of modes contribute to the
vibration amplitudes, the crossing frequencies are modal-weighted average frequencies of the
vibration. It is postulated in this paper that the crossing frequency can be used as a measure of
heat exchanger support-plate e!ectiveness. Using a time-domain, nonlinear analysis technique,
the crossing frequencies of a tube vibrating in support plates with oversized holes can be
computed as a function of time and the tube-to-support-plate clearances. It was found that the
#uid}elastic stability margin of a tube bundle, in the context of the original Connors' equation
for tube bundle #uid}elastic instability, should be independent of the tube-to-support-plate
clearances. A simple method of estimating the critical velocity based on the time-domain
equation of #uid}elastic stability is suggested. ( 2002 Academic Press
1. INTRODUCTION

IT IS WELL KNOWN THAT AS THE cross-#ow velocity across a closely packed tube bundle
increases beyond a certain value, called the critical velocity, the tube bundle will become
unstable. The motion of the tubes changes from individually random to organized orbital,
with amplitudes rapidly increasing as the cross-#ow velocity increases, until tube-to-tube
impacting occurs. Based on a combination of experimental data derived from tests on a row
of #exibly supported, single-span tubes subjected to uniform cross-#ow, and phenom-
enological reasoning, Connors (1970, 1978) deduced the following equation for determining
the critical velocity:
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, the modal or generalized sti!ness, the critical velocity for a particular

mode is completely governed by the modal sti!ness of the tube.
Since Connors "rst discovered this phenomenon, re"nements on the above basic equa-

tion to account for the e!ect of nonuniform velocity and density distributions, tube bundles
involving more than one row of tubes, tube bundles involving more than one span of tubes,
and tube bundles of di!erent pitch-to-diameter ratios and of di!erent arrangements have
been given by many authors. Like Connors' original equation, nearly all of these later
&&re"nements'' are basically frequency-domain equations. A review paper by Price (1993),
together with the extensive bibliography it contains, gives further details on the general
subject of tube bundle #uid}elastic instability. The objective of this paper is to address the
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Figure 1. In a structure vibrating in one mode, the positive crossing (arrows) frequency is equal to its modal
frequency.
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other questions: what is the e!ect of "nite tube-to-support-plate clearance on the critical
velocity as predicted by the Connors equation, and how can the critical velocity in an
industrial heat exchanger be more correctly predicted with the time-domain, nonlinear
formulation of tube bundle #uid}elastic stability? To answer these questions, we apply
a concept that is commonly used in fatigue analysis*the crossing frequency.

2. THE CROSSING FREQUENCY

The crossing frequency, or more accurately the positive crossing frequency, is de"ned as the
number of times per second the response (displacement, stress, strain, etc.) at a point of
a structure crosses the zero (or mean, if there is a static mean) response line from the
negative amplitude to the positive amplitude. In a linear structure vibrating in one mode,
the crossing frequency is equal to the modal frequency of the structure, as shown in
Figure 1. In a linear structure vibrating with more than one mode, it can be shown that
(Rice 1944, 1954; Crandall & Mark 1973) the crossing frequency is an e!ective modal-
participation-weighted mean frequency of the structure:
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As shown in Figure 2, if the structure vibrates predominantly in the "rst mode, its crossing
frequency will be almost equal to its "rst modal frequency, while if it vibrates predominantly
in the second mode, its crossing frequency will be almost equal to its second modal
frequency. If both modes contribute equally to the response, its crossing frequency will be
a weighted average of these two frequencies. Figure 3 shows the crossing frequency of a heat
exchanger tube with oversized tube support-plate holes. The motion in this case is chaotic.

The crossing frequency concept has been used by engineers to predict the fatigue usage of
structural components vibrating with a combination of normal modes, based on fatigue
curves derived from tests using cyclic loads, each at one speci"c frequency. Since the modal
frequency is a measure of the sti!ness of the structure vibrating in that particular mode, and
the crossing frequency is a modal-participation-weighted average of the modal frequencies,
one can deduce that the crossing frequency is a modal-participation-weighted measure of



Figure 2. A structure vibrating in two modes, the positive crossing (arrows) frequency is a modal-participation-
weighted average of the two modal frequencies.

Figure 3. Crossing frequency of a system undergoing chaotic motion.
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the system sti!ness of the structure, vibrating in a combination of normal modes. Since in
Connors' equation (1), the modal critical velocity is completely governed by the tube modal
sti!ness, it is reasonable to assume that when more than one mode becomes unstable at the
same time, the system critical velocity (instead of the modal critical velocity) would be
completely governed by the system sti!ness (or crossing frequency) of the tube.

3. A TIME-DOMAIN EQUATION FOR THE CRITICAL VELOCITY

In the time domain, the equation of motion for a tube in a tube bundle can be written as
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By assuming a &&velocity-controlled'' #uid}structure interaction mechanism, Chen (1983),
Axisa (1988) and SauveH (1996) show that
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and equations (3) and (4) together reduce to the form of Connors' equation (1). The
remaining question is, what is f

o
?

Axisa used the modal frequency f
n

for f
o
, defeating the purpose of writing the stability

equation in the time domain, with the objective of nonlinear analysis in which the very
concept of normal modes can no longer be used. SauveH (1996) called f

o
a participation

frequency and computed and updated it at every time step in the solution. As SauveH put it,
the major task of the entire procedure was to compute this &&participation frequency''. The
need to continually update this frequency resulted in a very time-consuming algorithm. It is
postulated in this paper that in equation (3), f

o
is the crossing frequency f

c
. In terms of the

crossing frequency, Connors' equation can be written as
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where f
cc

is the crossing frequency at the threshold of instability and the system &&damping
ratio'' is related to the system damping coe$cient by
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does not include damping due to #uid}structure interaction.
Being a frequency-domain parameter, the &&participation frequency'' is di$cult to com-

pute in a nonlinear time-domain analysis. The crossing frequency, on the other hand, is
a time-domain parameter. With today's computing software and hardware, the crossing
frequency can readily be obtained by actually counting the number of times per second the
response crosses the zero (or mean, if there is a static mean) axis from the negative to the
positive. Provided that Connors' constant and the crossing frequency are approximately
constant as a function of the tube-to-support-plate clearance, the critical velocity can then
be obtained as a function of the tube-to-support-plate clearance.

4. NUMERICAL EXPERIMENT

A tube in a large commercial nuclear steam generator (Figure 4) was used to study the e!ect
of tube-to-support-plate clearance on the crossing frequency, and hence on #uid}elastic
loading, during normal operations (below the critical velocity) and as the velocity increased
beyond the critical velocity. A frequency-domain linear analysis (that is, without
tube}support-plate clearances) was carried out "rst. The forcing function was obtained by
"tting an upper-bound curve to the two-phase power spectral density data of Pettigrew
& Taylor (1993). The reaction forces at the top support plates and the r.m.s. displacement at
the apex were computed. For the nonlinear time-domain analysis with tube}support-plate
clearances, two point loads, each with an in-plane and an out-of-plane component, were
applied to the U-bend of the steam generator tube to simulate the distributed turbulence-
induced forcing function. The spectral shapes of these point loads were taken to be the same
as the above-mentioned empirical upper bound curve to the two-phase spectrum, while its
magnitudes were adjusted until they gave the same reaction forces at the top support plates
of the tube, and about the same r.m.s. displacement at the apex of the U-bend. Based on the
reasonable assumption that the wear rate between the tube and the support plate depends



Figure 4. Finite-element model of nuclear steam generator tube under study. To simplify the time-domain
nonlinear analysis, the distributed random pressure force was replaced by two random point forces, F1 and F2,
each with an in-plane and an out-of-plane component. The magnitudes of these two point forces were adjusted to
give approximately the same vibration amplitude at the apex and the same reaction forces at the top support plates
(nodes 71 and 109), as those caused by the distributed random pressure: PQ, pinned support; ///, "xed support;

]], node number.
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only on the reaction force at this support plate and the displacement at the apex of the
U-bend, these two point loads were used in subsequent time-domain wear work-rate
calculations for the tube. This approach greatly reduced the computation time for this
nonlinear wear analysis.

These two frequency-domain point loads were then transformed into two time-domain
point loads by inverse fast Fourier transform (FFT). These were substituted into the
right-hand side of equation (3) and a nonlinear "nite-element computer program was used
to solve the equation, with and without clearances between the tube and the tube support
plates. The following cases were considered.

(i) Normal operation condition (tube stable, cross-#ow velocity equal to half the critical
velocity). Solutions for 0, 1, 2 and 3 times the normal tube-to-support-plate clearance were



Figure 5. Initial crossing frequency versus crossing frequency as the tube approaches the instability threshold
(1 in"25)4 mm).
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obtained for 4)0 s. The crossing frequencies were computed as a function of time in each
case.

(ii) Behavior near instability threshold. The negative damping force due to #uid}elastic
coupling (C

FSI
) in equation (3) was gradually increased until the tube became unstable.

Again 4.0 s of solution was obtained in each case and the crossing frequencies were
computed as a function of time.

5. RESULTS

Figure 5 shows the out-of-plane (z-direction) time history response at the apex of the
U-bend, when the tube-to-support-plate clearances are 0 (i.e., linear case), 1, 2, and 3 times
the as-built nominal clearance. The #uid}elastic force C

FSI
on the left-hand side of equation

(3) was adjusted in each case so that the tube was just at the instability threshold. Also
shown in Figure 5 are the initial crossing frequencies when the vibration amplitudes were
small, and the crossing frequencies as the vibration amplitudes started to grow and the
system approached instability. In each case, 4)0 s of record is shown. Figure 5 shows that
during the initial 1)5 s when the amplitudes were small, the crossing frequencies depended
on the tube-to-support-plate clearances. As the vibration amplitudes grew and the tube



Figure 6. Amplitude probability distribution plots of a loosely supported tube: (a) below the critical velocity; (b)
at the critical velocity; and (c) that of a tube without tube}support-plate clearance.

Figure 7. Crossing frequencies as a function of time for di!erent tube}support-plate clearances
(below the critical velocity).
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approached instability, the crossing frequencies all approached that of a tube without
tube-to-support-plate clearance.

Figure 6 shows amplitude probability distribution function (PDF) plots during the initial
1)5 s of the response, when the vibration amplitudes were small, and the "nal 2)0 s of the
response, when the vibration amplitudes were large and the system was approaching
instability. These PDF plots show that when the vibration amplitudes were small compared
with the tube}support-plate clearance, the motion was &&chaotic''. However, as the instabil-
ity threshold was approached and the vibration amplitudes increased, the motion started to
&&organize'' itself and became more like random vibration, except within the boundary of the
support-plate hole, where the motion was still chaotic. When the instability threshold was
exceeded, the &&#at top'' regions of the PDF plots continue to &&shrink'' until the PDF plots
approached those exhibited by a tube without tube-to-support-plate clearance (Gaussian
random).

Figure 7 shows the crossing frequency as a function of time in each of the above cases
with di!erent tube-to-support-plate clearances, when the tube was under normal loading
conditions (i.e., stable, but with #uid}elastic force). In all cases, the crossing frequencies were
approximately constant except for the initial seconds of the response.



Figure 8. Details of chaotic motion before instability, 3] clearance, at apex of a U-bend.

Figure 9. Details of motion at the top support plate showing that the support plate is active.
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Figure 8 shows the out-of-plane time history response of a point at the apex of the
U-bend, when the tube-to-support-plate clearance is 3 times the as-built nominal clearance.

Figure 9 shows the corresponding tube response at the top support plate, and shows that
this support plate was active, even though the vibration amplitude at the apex was relatively
small.

6. CONCLUSIONS

This study has shown the following.

1. Assuming #uid}elastic loading,
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exists (even below the critical velocity); this #uid}structure interaction e!ect can be imple-
mented into a nonlinear time-domain equation either as a constant forcing function on the
right-hand side of the equation, or as a negative damping on the left-hand side of the
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equation. Once the crossing frequency is determined (by counting in the time domain) from
the initial second or so of the solution, there is no need to update this #uid}elastic load in
subsequent time steps. This results in tremendous saving of computation time. While the
&&velocity-controlled'' #uid}structure interaction mechanism is used in this study as a speci-
"c example, the same conclusion applies to any other models of #uid}structure coupling,
such as Chen's (1983) &&#uid sti!ness-controlled'' model.

2. E!ect of tube}support-plate clearance on instability threshold
As a tube becomes unstable, the crossing frequencies approach the same values as that for
a tube without tube-to-support-plate clearance. Thus, the critical velocity, in the context of
the original Connors' equation (1), with b constant, is independent of tube-to-support-plate
clearance. Physically this is because as the amplitude approaches &&in"nity'', the
tube}support clearance becomes in"nitesimal in comparison with the vibration amplitude,
irrespective of its actual value. In practice, however, the tubes would hit each other long
before their vibration amplitudes become &&in"nite''. Thus, aside from instability and wear,
one of the criteria in tube bundle dynamic analysis is that, as the gap clearance increases, the
mid-span vibration amplitudes must be small enough so that frequent tube-to-tube impact-
ing will not occur. This, however, can be solved by standard nonlinear time-domain
analysis.

3. Support-plate e!ectiveness
Even well below the instability threshold, tube bundles built with normal tube-to-support-
plate clearances vibrate with the support plates mostly active.

4. Critical velocity in the time-domain
The time-domain stability equations (3) and (4) can be used to predict the critical velocity in
an industrial heat exchanger tube with multiple spans, closely spaced modal frequencies and
tube-to-support-plate interactions, by gradually increasing the magnitude of C

FSI
until the

solution starts to diverge. Separate studies showed that using this method, the critical
velocity is dependent on the tube}support clearance. Within the range of industrial interest,
the critical velocity generally increases with tube}support clearance. This will be the subject
of a future publication.
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APPENDIX: NOMENCLATURE

C
4:4

system damping coe$cient
C

FSI
damping from #uid}elastic coupling

f
c

crossing frequency
f
cc

crossing frequency at instability threshold
f
n

modal frequency
G

d
( f ) response power spectral density

k
n

generalized sti!ness
¸ length of the tube
M"m¸ total mass of the tube
m

t
linear mass density of tube, including added mass and mass of water contained

<
c

critical velocity for instability
<
p

pitch velocity
b Connors' constant
f
n

modal damping ratio
f
FSI

damping ratio from #uid}elastic coupling
f
4:4

system damping ratio (of tube only)
o shell side #uid density
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